Incompressible Navier-Stokes Requirements

Applied Numerical Algorithms Group
NERSC Division
Lawrence Berkeley National Laboratory
Berkeley, CA

April 21, 2003

Contents

1 Introduction
1.1 Purposeo
1.2 Overview

2 General Description
2.1 Overall System Concept,
2.2 Operating Environment
2.3 High-level Diagram

3 Requirements
3.1 Algorithm Requirements
3.2 System Requirements
3.3 Implementation Strategy

4 Other Non-Functional Requirements/Attributes

5 Operational Scenarios

NN

W w ww

oo 00 O &

Chapter 1

Introduction

1.1 Purpose

This document outlines the requirements for the Chombo-based AMR Incompressible
Navier-Stokes (AMRINS) program.

1.2 Overview

The purpose of this project is to provide an adaptive mesh refinement (AMR) code capa-
bility for simulating multiphase low-Mach-number fluid dynamics in microgravity environ-
ments.

Chapter 2

General Description

2.1 Ouverall System Concept

The AMRINS program uses the Chombo C++- libraries to implement an AMR algorithm
for the incompressible Navier-Stokes equations which uses block-structured mesh refine-
ment to increase solution accuracy at less computational expense than the equivalent
uniform grid computation. This code refines in time as well as space. Various algo-
rithmic elements are required to ensure that the solution maintains such properties as a
divergence-free velocity field, conservation of advected quantities, and freestream preser-
vation.

2.2 Operating Environment

AMRINS and the Chombo software infrastructure are designed to work in either a single-
processor environment or on a parallel distributed memory system. In the latter case,
Chombo has high-level libraries which support domain decomposition across processors
which are implemented using MPI.AMRINS shares the same operating environment re-
quirements as Chombo. To compile the code, functioning C4++ and F77 compilers are
required, along with GNU make and PERL, which is used for preprocessing Chombo
Fortran code.

Both Chombo and AMRINS use HDF5 for 1/O operations. AMRINS writes data
output files which can be read, visualized, and analyzed by the ChomboVis utility.

2.3 High-level Diagram

A diagram of the basic AMRLevel/AMRNavierStokes class relationship is shown in Figure
2.1. The AMRNavierStokes class, which is derived from the AMRLevel class, contains
the basic dependent data vel _old, vel new, lambda_ old, and lambda new for a single
AMR level. A CCprojector object is also a member of each AMRNavierStokes object,

AMRNavierStokes

m_projector: class CCProjector

u_old, u_new,
lambda_old,
lambda_new

: class Level Data<FArrayBox>

advance()
computeAdvectionV el ocities()
advectScalar()
predictVelocities()
postTimeStep()

regrid()

postRegrid()

initializeGlobal Pressure()
initializel evel Pressure()

CCProjector

phi, pi,
e sync, :classLevelData<FArrayBox>
e lambda

o levelMacProject()
initial Data() applyMacCorrection()
postlnitialize() LevelProject()
computeDt_Q correctCCVelocities()
computel nitial Dt() doSyncOperations()

doSyncProjection()
computeV DCorrection()
doPostRegridOps()
initialVelocityProject()
initialLevel Project()

Figure 2.1: Software configuration diagram for the AMRNavierStokes class.

and is responsible for divergence-constraint related operations for the level's worth of data
contained in the AMRNavierStokes. It is anticipated that as new some functionality is
added (support for suspended particles, for example), the basic structure of the code will
remain the same, with the AMRINS code being the basis for the extended functionality
code. We anticipate that this will result in a number of child codes depending on the
requirements of the physical system being modeled. Other functionalities being imple-
mented for the NASA-CAN project, such as multifluid front tracking and self-gravity, will
be implemented in separate codes which will also use much of the same basic functional
building blocks and Chombo classes as the AMRINS code.

As shown in Figure 2.2, an AMR class object is constructed which manages the entire
AMR multilevel solution. The AMR object contains a Vector of AMRLevel-derived objects,
in this case AMRNavierStokes objects, which contain the data for each level and also
encapsulate the functionality required to advance the data on a single level in time.

main

AMR

Vector<AM IA?LeveI>

AMRNavierStokes

Figure 2.2: Software configuration diagram for the AMRNavierStokes class.

Chapter 3

Requirements

3.1 Algorithm Requirements

1. AMR Incompressible Navier-Stokes Code (AMRINS) — Program which implements
block-structured AMR for the incompressible Navier-Stokes equations, extending
the algorithm in [MCO00] to the Navier-Stokes equations as documented in the
Software Design Document. AMRINS uses the AMR/AMRLevel interface in the
AMRTimeDependent Chombo library to manage the multilevel advance process. The
following sub-requirements detail the added functionality needed to implement the
Navier-Stokes algorithm in this framework. Unless otherwise noted, this requirement
and all its sub-requirements have been implemented by Milestone E.

(a) Single-level evolution — Code will advance a single AMR level from time ¢¢ to
time (t‘ + At), where the £ superscript denotes the refinement level. Follow-
ing [BCG89], use a semi-implicit update — explicit computation of nonlinear
advection terms, implicit Runge-Kutta approach for computing the diffusive
terms, and projection formulation to satisfy the divergence constraint.

i. Advective Terms — Use higher-order Godunov method to compute the
nonlinear advective terms, coupled with a face-centered projection and a
volume-discrepancy-type correction to preserve incompressible advection.
A. Nonlinear advection — Use higher-order Godunov scheme based on

[Sal94, Col90] to compute nonlinear advection

B. Advection velocity projection — Face-centered projection is applied
to the advection velocities to ensure they satisfy the incompressible
divergence constraint.

C. Volume discrepancy correction for freestream preservation — use the
volume discrepancy approach described in [MCO00] to compute an ad-
vective correction to ensure that freestream preservation is approxi-
mately preserved at coarse-fine interfaces.

Diffusive terms — Because of the presence of coarse-fine interfaces, L
stability is important when computing diffusion in an AMR context. An
L stable second-order Runge-Kutta method based on the one presented
in [TGA96] is used to compute the diffusive terms for the single-level
update.

Projection for incompressibility. To ensure the solution approximately
satisfies the incompressible divergence constraint, apply a cell-centered
approximate projection [LC, MCO00].

(b) AMR solution The AMRINS code uses the approach of Berger & Colella
[BC89]; refinement is in the form of block-structured, nested grids, with re-
finement in time as well as space. While the AMR/AMRLevel interface in the
Chombo AMRTimeDependent library manages the basic adaptive algorithm,
the AMRINS implementation imposes additional algorithmic requirements, in
the form of ensuring that the solution employs proper coarse-fine interface
matching conditions for hyperbolic, parabolic, and elliptic operators.

Hyperbolic (advection) and Parabolic (diffusion) operators — To ensure
both conservation and stability, an implicit refluxing step is carried out
to ensure that fluxes are consistent across the coarse-fine interface. The
presence of diffusive momentum fluxes across the coarse-fine interface
requires that this flux correction step be done in an implicit manner for
stability.

. Elliptic matching (divergence constraint) — To ensure that the divergence

constraint is enforced properly at coarse-fine interfaces (see the discussion
in [MCO00], a projection based on a multilevel discretization of the cell-
centered projection of [LC, MCO00] is applied to the multilevel velocity
field.

Freestream preservation Refinement in time along with flux correction
at coarse-fine interfaces can lead to violations of freestream preserva-
tion. A correction based on the volume discrepancy approach in [MCOQ]
is computed based on an auxiliary passively advected scalar. This correc-
tion is then applied to the advection velocity field to correct for errors in
freestream preservation.

(c) Adaptive regridding. — After a regridding operation has altered the AMR
hierarchy, the solution must be re-initialized, as detailed in the Software Design
Document. Operations include:

re-project velocity field to ensure incompressibility
initialize pressure field for new grid hierarchy
recompute freestream preservation for new grid hierarchy.

(d) HDF5 I/O to plotfiles — At specified intervals, the solution is written out to
hdf5 plotfiles. These plotfiles can be read and processed using the ChomboVis

utility.
(e) Checkpoint-restart capability based on hdf5 checkpoint files. — A computation

may be restarted using data which is periodically written to hdf5 checkpoint
files.

2. Milestone | — suspended particles: For the NASA CAN milestone | requirement,
support for suspended particles in incompressible fluid will be added to the AMRINS
code.

3.2 System Requirements

The AMRINS code is designed to use the Chombo infrastructure, which has the following
characteristics:

1. C++/Fortran — Chombo is a C++ class library with support for interfacing with
Fortran 77. In general, C++ is used for data structures and operations on irregular
sets of cells, while Fortran is used for floating-point-intensive operations on regular
blocks of cells.

2. Domain decomposition for distributed memory — The strategy employed by Chombo,
which is carried over to AMRINS, is to divide the grids on each level among pro-
cessors, and to use MPI for communication between processors.

3. ParmParse user interface — Inputs to the code are provided through a text inputs
file which is processed using the Chombo ParmParse utility class.

3.3 Implementation Strategy

The general class structure of the AMRINS code is:

1. We make use of the AMR and AMRLevel interface classes in Chombo to manage
the general AMR algorithm. The AMR class manages the multilevel aspects of the
algorithm, such as the multilevel advance strategy, regridding operations, etc, while
the AMRLevel class is designed to encapsulate data and operations on a single AMR
level, such as the single-level advance step.

2. AMRNavierStokes: public AMRLevel implements AMRLevel class for the in-
compressible Navier-Stokes algorithm. The AMRNavierStokes class owns the pri-
mary dependent data, which is the velocity field at the old and new times for each
level.

3. CCProjector — C++ class which implements algorithmic and data components re-
lating to satisfying the divergence constraint, among these are the advection velocity

projection, the single-level projection, the multilevel projection, and the freestream
preservation correction. Data members include the various correction fields required
for these operations.

. Diffusion Solver — At the moment, the diffusion solver is hard-coded into the
AMRNavierStokes class; however, to improve reusability and flexibility, this is being
factored out in the near future into a separate DiffusionSolver C++ class.

. Nonlinear Advection — At the moment, the nonlinear advection prediction steps are
coded into the AMRNavierStokes class, along with an auxiliary standalone function
which computes the upwinded tracing step. In the near future, this will be replaced
with the upwinded advection capability developed for the AMRGodunov code in the
Chombo examples.

Chapter 4

Other Non-Functional
Requirements/Attributes

Tied to the milestones for the NASA CAN, there are other non-functional requirements
for this code:

1. Baseline performance: As part of milestone E of the NASA CAN, the AMRINS code
has been instrumented and its performance evaluated for a benchmark problem (see
the accompanying Baseline Performance document).

2. Milestone F — performance improvement: As part of the milestone F requirement
for the NASA CAN, the performance of the AMRINS code on the baseline problem
will be improved over that measured as the baseline by a five-fold reduction in time
to solution, with 30% less memory usage.

3. Milestone | — performance evalutation: For the NASA CAN milestone | requirement,
once support for suspended particles is implemented, the performance of the code
will also be evaluated for a benchmark problem.

4. Milestone G — performance improvement and release: The performance of the new
components added in milestone | will be improved by a fivefold reduction in CPU
time, along with a 30% reduction in memory usage. The AMRINS code with the
particle extensions will be released on the project website.

10

Chapter 5

Operational Scenarios

The AMRINS code is designed to be run from the command line, with user-defined options
passed to the code using an inputs file using the Chombo ParmParse functionality. User-
selected options include the size of the problem, how long the run should last, the number
of refinement levels allowed, etc. A more complete list of inputs file options, along with
a sample inputs file, appears in the AMRINS design document.

11

Bibliography

[BC8Y]

[BCG8Y]

[Col90]

[LC]

[MCO0]

[Sal94]

[TGA6]

M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydro-
dynamics. J. Comput. Phys., 82(1):64-84, May 1989.

J. B. Bell, P. Colella, and H. M. Glaz. A second-order projection method for the
incompressible Navier-Stokes equations. J. Comput. Phys., 85:257-283, 1989.

Phillip Colella. Multidimensional upwind methods for hyperbolic conservation
laws. J. Comput. Phys., 87:171-200, 1990.

M. F. Lai and P. Colella. An approximate projection method for the incompress-
ible Navier-Stokes equations. unpublished.

D Martin and P Colella. A cell-centered adaptive projection method for the
incompressible Euler equations. J. Comput. Phys., 2000.

Jeff Saltzman. An unsplit 3d upwind method for hyperbolic conservation laws.
J. Comput. Phys., 115:153-168, 1994.

E.H. Twizell, A.B. Gumel, and M.A. Arigu. Second-order, [y-stable methods
for the heat equation with time-dependent boundary conditions. Advances in
Computational Mathmatics, 6:333-352, 1996.

12

